

Computer Science Department cs.salemstate.edu

CSC 315A Computer Networks and Data Communications

4 cr.

Instructor: email:	TBA <u>TBA@salemsta</u>	te.edu Office: lo Office He	ocation ours: days and time	Phone: (978) 542-externes	nsion
	Section	Time	Room	Final Exam	
	nn	days and times	location	Date and time	

Catalog description:

This course provides an introduction to the basic principles of data communications and computer networks. Modulation techniques, multiplexing, transmission media, error control techniques, message formatting, switching and packet-switching techniques, various communication protocols, and networking and internetworking techniques are discussed. Four lecture hours per week, plus programming work outside of class.

Prerequisite: CSC 260. Not open to students who have received credit for ITE 215.

Goals:

- The purposes of this course are to:
- CG01: provide an introduction to the basic requirements of and the techniques used in data communications networks;
- CG02: develop students' understanding of the basic principles of the technology and architecture of data and computer communications.

Objectives:

Upon successful completion of this course the student will have:

- CO01: mastered terminology and basic concepts of general characteristics of LAN and WAN systems;
- CO02: established a unified and fundamental view of the broad field of data communications networks;
- CO03: gained hands-on experience in developing software for a client-server environment;
- CO04: chosen a topic in an area of data communications that represents current and/or future trends, read and synopsized three journal/magazine articles relating to the topic, and given a formal presentation of a completed term paper.

SO	CO01	CO02	CO03	CO04
SO-1	1	~	~	~
SO-2	~	~	~	~
SO-3		~		~
SO-4		~	~	~
SO-5				
SO-6	✓	✓	✓	✓

Student Outcome (SO) vs. Course Objectives matrix

Notes:

- **SO-1:** Analyze a complex computing problem and to apply principles of computing and other relevant disciplines to identify solutions.
- **SO-2:** Design, implement, and evaluate a computing-based solution to meet a given set of computing requirements in the context of the program's discipline.
- **SO-3:** Communicate effectively in a variety of professional contexts.
- SO-4: Recognize professional responsibilities and make informed judgments in computing practice based on legal and

ethical principles.

SO-5: Function effectively as a member or leader of a team engaged in activities appropriate to the program's discipline. **SO-6:** Apply computer science theory and software development fundamentals to produce computing-based solutions.

Topics:

opics:	
Data transmission	NC1(3, 0, 0)
° transmission media	
 history of data communications 	
° frequency	
° spectrum	
° bandwidth	
° signal strength	
 analog and digital data transmission 	
 transmission impairments 	
° signal-to-noise ratio	
° twisted pair	
° coaxial cable	
° optical fiber	
° satellites	
° microwave	
° infrared	
 low earth orbit satellites 	
 low earth orbit satellite arrays 	
 Local asynchronous communications (RS232) 	NC5(0, 1, 0)
 The Need For Asynchronous Communication 	
 Standards For Communication 	
 Baud Rate, Framing, And Errors 	
 Full Duplex Asynchronous Communication 	
 Limitations Of Real Hardware 	
 Hardware Bandwidth And The Transmission Of Bits 	
 The Effect Of Noise On Communication 	
• Long-Distance Communication (Carrier, Modulation, And Modems)	NC6(0, 2.5, 0)
 Sending Signals Across Long Distances 	
 Modem Hardware Used For Modulation And Demodulation 	
 Leased Analog Data Circuits 	
 Optical, Radio Frequency, And Dialup Modems 	
 Carrier Frequencies And Multiplexing 	
 Baseband And Broadband Technologies 	
 Wave Division Multiplexing 	
° Spread Spectrum	
° Time Division Multiplexing	
Packet Transmission Delate English And English Detaction	NC1(1, 0, 0)
Packets, Frames, And Error Detection The Concernt Of Products	NC3(6.5, 0, 0)
 The Concept Of Packets Packets And Time Division Multiplexing 	
 Packets And Time-Division Multiplexing Packets And Hardware Frames 	
Tackets And Hardware Frames	
 Byte Stuffing Transmission Errors 	
Tarity Dits And Tarity Checking	
 Probability, Mathematics, And Error Detection Detecting Errors With Checksums 	
 Detecting Errors with Crecksums Detecting Errors With Cyclic Redundancy Checks 	
 Combining Building Blocks 	
 Burst Errors 	
 Frame Format And Error Detection Mechanisms 	
I AN Technologies And Network Topology	NC5(0.6.0)

LAN Technologies And Network Topology
 Direct Point-to-Point Communication

	° Shared Communication Channels	
	 Significance Of LANs And Locality Of Reference 	
	° LAN Topologies	
	 Example Bus Network: Ethernet 	
	 Carrier Sense On Multi-Access Networks (CSMA) 	
	 Collision Detection And Backoff With CSMA/CD 	
•	Hardware Addressing And Frame Type Identification	NC1(2, 0, 0)
	 Specifying A Recipient 	
	° How LAN Hardware Uses Addresses To Filter Packets	
	° Format Of A Physical Address	
	° Broadcasting	
	° Multicasting	
	 Multicast Addressing 	
	 Identifying Packet Contents 	
	 Frame Headers And Frame Format 	
•	LAN Wiring, Physical Topology, And Interface Hardware	
	 Speeds Of LANs And Computers 	
	 Network Interface Hardware 	
	 The Connection Between A NIC And A Network 	
	 Original Thick Ethernet Wiring 	
	° Connection Multiplexing	
•	Extending LANs: Fiber Modems, Repeaters, Bridges, and Switches	NC1(1 0, 0)
	Long-Distance Digital Connection Technologies: repeater/bridge/router/gateway	NC1(0.5, 0, 0)
	WAN Technologies And Routing	NC5(0, 0.5, 0)
	Connection-Oriented Networking And ATM	
•	Network Characteristics: Ownership, Service Paradigm, And Performance	NC1(1, 0, 0)
•	Protocols And Layering	NC1(1, 0, 0) $NC1(1, 0, 0) NC2(0, 2, 0)$
•	Internetworking	NC1(1, 0, 0), NC3(0, 3, 0), NC4(0, 3, 0)
	° Internetworking: Concepts, Architecture, and Protocols	NC4(0, 3, 0)
	 IP: Internet Protocol Addresses 	
	 Binding Protocol Addresses (ARP) 	
	 IP Encapsulation, Fragmentation, And Reassembly 	
	 The Future IP (IPv6) 	
	 An Error Reporting Mechanism (ICMP) 	
	 TCP: Reliable Transport Service 	
	 Internet Routing 	
•	Network Applications	NC2(4, 0, 0), SE5(0, 1, 0),
-		PBD2(0, 0, 1)
	° Client-Server Interaction	
	° The Socket Interface	

- The Socket Interface
- 0 Example Of A Client And A Server
- 0 Naming With The Domain Name System
- 0 Electronic Mail Representation And Transfer
- 0 File Transfer And Remote File Access
- 0 World Wide Web Pages And Browsing
- Dynamic Web Document Technologies (CGI, ASP, JSP, PHP, ColdFusion) 0
- 0 Technology For Active Web Documents (Java, JavaScript)
- 0 RPC and Middleware
- 0 Network Security

The course grade will be determined using the following approximate weights: 30% final examination, 25% midterm examination, 15% written homework, 20% programming assignments, 10% term paper and oral presentation

Course Objective / Assessment Mechanism matrix

	Homework Assignments	Programming Projects	Programming Exercises	Term Paper	Hour Examination	Final Examination
CO01	✓	~	✓	✓	~	✓
CO02	✓	✓	✓	✓	~	✓
CO03			✓		~	✓
CO04				✓		

Bibliography:

Comer, Douglas E. Computer Networks and Internets. Sixth Edition. Pearson, 2014.

Fitzgerald, Jerry and Dennis, Alan. Business Data Communications and Networking. Thirteenth Edition. Wiley, 2017. Forouzan, Behrouz. TCP/IP Protocol Suite. Fourth Edition. McGraw Hill, 2009.

Forouzan, Behrouz; Mosharraf, Firouz. Computer Networks: A Top Down Approach, First Edition, Mcgraw-Hill, 2011.

Halsall, Fred. Data Communications, Computer Networks, and Open Systems. Fourth Edition. Addison-Wesley, 1996.

Kurose, James F.; Ross, Keith W. Computer Networking – A top-down Approach. Seventh Edition. Pearson, 2016. Stallings, William. Data and Computer Communications. Tenth Edition. Pearson, 2013. Tanenbaum, Andrew S. Computer Networks. Fifth Edition. Pearson, 2010.

Academic Integrity Statement:

"Salem State University assumes that all students come to the University with serious educational intent and expects them to be mature, responsible individuals who will exhibit high standards of honesty and personal conduct in their academic life. All forms of academic dishonesty are considered to be serious offences against the University community. The University will apply sanctions when student conduct interferes with the University primary responsibility of ensuring its educational objectives." Consult the University catalog for further details on Academic Integrity Regulations and, in particular, the University definition of academic dishonesty.

The Academic Integrity Policy and Regulations can be found in the University Catalog and on the University website (<u>http://catalog.salemstate.edu/content.php?catoid=13&navoid=1295#Academic Integrity</u>). The formal regulations are extensive and detailed - familiarize yourself with them if you have not previously done so. A concise summary of and direct quote from the regulations: "Materials (written or otherwise) submitted to fulfill academic requirements must represent a student's own efforts". *Submission of other's work as one's own without proper attribution is in direct violation of the University's Policy* and will be dealt with according to the University's formal Procedures. *Copying without attribution is considered cheating in an academic environment - simply put*, <u>do not do it!</u>

University-Declared Critical Emergency Statement:

In the event of a university-declared emergency, Salem State University reserves the right to alter this course plan. Students should refer to <u>www.salemstate.edu</u> for further information and updates. The course attendance policy stays in effect until there is a university-declared critical emergency.

In the event of an emergency, please refer to the alternative educational plans for this course, which will be distributed via standing class communication protocols. Students should review the plans and act accordingly. Any required material that may be necessary will have been previously distributed to students electronically or will be made available as needed via email and/or Internet access.

Equal Access Statement:

"Salem State University is committed to providing equal access to the educational experience for all students in compliance with Section 504 of The Rehabilitation Act and The Americans with Disabilities Act and to providing all reasonable academic accommodations, aids and adjustments. <u>Any student who has a documented disability requiring an accommodation, aid or adjustment should speak with the instructor immediately.</u> Students with Disabilities who have not previously done so should provide documentation to and schedule an appointment with the Office for Students with Disabilities and obtain appropriate services."

Note: This syllabus represents the intended structure of the course for the semester. If changes are necessary, students will be notified in writing and via email.