
Page 1 of 6

Computer Science Department
cs.salemstate.edu

CSC 351 Software Engineering II 4 cr.

Instructor: TBA Office: location Phone: (978) 542-extension
email: TBA@salemstate.edu Office Hours: days and times

Section

Time

Room

Final Exam

nn

days and times

location

date and time
Lnn

days and times

location

Catalog description:

This course is an extension of CSC 300 and focuses on the implementation of the software engineering principles covered
therein. It will explore state-of-practice and cutting-edge techniques and tools related to the design, implementation and
maintenance of software systems. Topics include: design patterns; Model Driven Architecture (MDA); test-driven development;
agile development; extreme programming (XP); aspect-oriented design. An ongoing group project will be used to gain practical
experience with current software engineering practices and a variety of IDEs and CASE tools. Three lecture hours per week and
three hours of scheduled laboratory per week, plus programming work outside of class. Not open to students who have received
credit for CSC 301.

Prerequisite: CSC 300; CSC 263 strongly recommended.

Goals:

The purpose of this course is to develop students' understanding of modern methodologies, processes and techniques
encountered in the development of large-scale software systems. The goals of this course are:

CG01: to give students experience with a variety of software engineering techniques and paradigms;
CG02: to expand and integrate students' knowledge and skills in the areas of system analysis and software design,

implementation and verification;
CG03: to give students experience in making and critiquing presentations;
CG04: to give students experience in team software development.

Upon completion of the course, a student should have experience with a variety of the activities and techniques necessary to
conduct the development of a large system, should be able to select and apply the appropriate tools required to effect the
development process, and should have an appreciation of the strengths and weaknesses of the various design and
implementation models extant in the field.

Objectives:

Upon successful completion of the course, student will have:

CO01: demonstrated understanding of the software development life cycle and its phases;
CO02: demonstrated knowledge of the major techniques and models used in the implementation of each phase

(workflow) of software development;
CO03: gained experience with the tools and techniques of software development;
CO04: demonstrated understanding of modern design paradigms;
CO05: properly utilized modern CASE tool environments, specifically including UML modeling, in the design and

implementation of a large-scale project;
CO06: participated in the development and presentation of group projects.

mailto:TBA@salemstate.edu

Page 2 of 6

Student Outcome vs. Course Objectives matrix

Student Outcome CO01 CO02 CO03 CO04 CO05 CO06

SO-1 Analyze a complex computing problem and to apply principles of
computing and other relevant disciplines to identify solutions.
SO-2 Design, implement, and evaluate a computing-based solution to
meet a given set of computing requirements in the context of the
program's discipline.

SO-3 Communicate effectively in a variety of professional contexts.
SO-4 Recognize professional responsibilities and make informed
judgements in computing practice based on legal and ethical
principles.

SO-5 Function effectively as a member or leader of a team engaged in
activities appropriate to the program’s discipline.
SO-6 Apply computer science theory and software development
fundamentals to produce computing-based solutions.

Note:
SO-1 Analyze a complex computing problem and to apply principles of computing and other relevant disciplines to identify

solutions.
SO-2 Design, implement, and evaluate a computing-based solution to meet a given set of computing requirements in the

context of the program's discipline.
SO-3 Communicate effectively in a variety of professional contexts.
SO-4 Recognize professional responsibilities and make informed judgements in computing practice based on legal and ethical

principles.
SO-5 Function effectively as a member or leader of a team engaged in activities appropriate to the program’s discipline.
SO-6 Apply computer science theory and software development fundamentals to produce computing-based solutions.

Topics:

 Requirements SE5(3),SE6(0.5),SE7(1),SE8(1),SE11(0.5),
 SP1(0.5),SP2(0.5),SP4(1),SP5(0.5),SP9(0.5)
° determining user needs, distinguishing "needs" and "wants"
° overview of the requirements workflow
° defining scope
° understanding the domain
° requirement elicitation techniques

 interviewing, forms collection, use cases, prototyping
° test workflow in the context of requirements
° human factors
° prototypes and reuse

 metrics for the requirements workflow - what to measure, how to evaluate
 Object-Oriented (OO) Analysis IM1(1), SE1(1),SE2(0.5),SE7(0.5),
 SP1(0.5),SP3(0.5),SP5(0.5)
° overview of the analysis workflow
° OO analysis overview
° recognizing entity (data) classes
° entity modeling

 noun extraction
 CRC cards

° functional modeling
° dynamic modeling
° test workflow in the context of OO analysis
° interface class, data class, and control classextraction
° documents generated as a result of OO analysis

Page 3 of 6

° CASE tools for OO analysis
° metrics for the OO analysis workflow

 Classical ("Structured") Analysis IM1(2), SE1(0.5),SE7(0.5),SE8(5),SE10(1), SP1(1)
° structured analysis overview
° informal vs. formalvspecifications
° structured systems analysis

 data flow diagrams, alternative techniques
° entity-relationship (ER) modeling
° finite state machines and other formal techniques
° test workflow in the context of classical analysis
° documents generated as a result of OO analysis
° CASE tools for structured analysis
° metrics for the structured analysis workflow

 Design IM3(1), SE1(1),SE3(2),SE6(0.5), SE7(0.5),SE11(0.5),
 SP3(1),SP4(0.5),SP6(0.5)
° design and abstraction
° overview of the design workflow
° operation-oriented (function-oriented) design
° data flow analysis
° transaction analysis
° data-oriented design
° object-oriented design
° test workflow in the context of design
° real-time design techniques
° CASE tools for design
° metrics for the design workflow

 Design Patterns PL5(1), SE1(6),SE4(1)
° what is a design pattern?
° design patterns solve design problems
° design by contract / programming to an interface
° design with change in mind
° toolkits
° frameworks
° foundational creational patterns

 abstract factory, builder, factory method, prototype, singleton
° foundational structural patterns

 adapter, bridge, composite, decorator, facade, flyweight, proxy
° foundational behavioral patterns

 chain of responsibility, command, interpreter, iterator, mediator, memento, observer, state, strategy, template
method, visitor

° how to select design patterns
 understand that design patterns are abstractions
 know each pattern's intent
 know how patterns interrelate

 non-trivial problems are likely to require multiple patterns
 know how similar patterns differ
 know the causes for redesign (refactoring) and consider patterns designed to avoid those causes

° what to expect from patterns
° implementing design patterns
° CASE tools for design patterns

 Implementation IM2(1),IM3(1),IM4(1),IM6(1),IM7(1),
 SE2(1),SE3(2),SE5(0.5),SE6(2),SE7(0.5),SE11(1),
 SP4(0.5),SP5(0.5),SP6(0.5),SP9(0.5)
° overview of the implementation workflow
° choosing a programming language / platform
° good programming practices

Page 4 of 6

 mnemonic names, self-documenting code, formatting, general style rules
 practices that effect developer efficiency vs. computer efficiency

° coding standards
° code reuse

 licensing / intellectual property issues
° Testingreview of testing’s objectives, techniques, and outcomes from Software Engineering I
° unit testing
° unit integration and integration testing
° test workflow in the context of implementation

 testing to specifications (black box)
 testing to code (white box, glass box)
 theory vs. reality of testing

° black box testing techniques
° glass box testing techniques
° regression testing
° code walkthroughs and code inspections
° potential testing problems
° when to rewrite vs. debug
° product testing
° acceptance testing
° CASE tools for implementation, testing and code/configuration management
° metrics for the implementation workflow

 Maintenance, Post-Delivery SE3(1),SE5(1),SE6(0.5),SE7(1),SE8(0.5),SE11(1), SP4(0.5)
° necessity for post-delivery maintenance
° post-delivery maintenance skills vs. development skills
° management of post-delivery maintenance
° maintenance of OO-designed software vs. classical ("structured") software
° reverse engineering
° testing during post-delivery maintenances

 regression testing revisited
° CASE tools for post-delivery maintenance

The emphasis of the course is on the proper design, management and implementation of a software system from initial

conception to final product maintenance. There will be an ongoing case study presented in depth, paralleled by a semester-
long project in which all phases of the creation of a moderate-sized system will be addressed by groups within the class.
Extensive laboratory work, group discussion time and group presentations conducted as part of the scheduled laboratory
sessions are an integral component of the course, serving to reinforce the concepts and techniques presented in lecture.

All programs must conform to departmental guidelines for program design and implementation, and all lab reports must
conform to guidelines announced in class. Regardless of numeric average, a student will not be eligible for a passing grade
unless he or she has submitted a lab report for every programming assignment.

The course grade will be determined using the following approximate weights: project reports and deliverables: 25%;
presentations: 10%; midterm exam and final exam: 40%; homework and/or papers: 25%.

Course Objective / Assessment Mechanism matrix

 Exam / Quiz
Questions

Homework
Problems

Programming Projects Lab
Exercises

Group
Projects

CO01
CO02
CO03
CO04
CO05

Page 5 of 6

CO06

Web Resources:
 Agile Modeling (AM) Home Page: Effective Practices for Modeling and Documentation.
 http://www.agilemodeling.com/
 Association for Computing Machinery (ACM). http://www.acm.org/
 The Institute of Electrical and Electronics Engineers (IEEE). http://www.ieee.org/portal/site

Bibliography:

Beck, Kent; Andres, Cynthia. Extreme Programming Explained: Embrace Change. Second Edition.
 Addison-Wesley Professional, 2004.
Beck, Kent. Implementation Patterns. Second Edition. Addison-Wesley Professional, 2007.
Beck, Kent; Andres, Cynthia. Extreme Programming Explained: Embrace Change. Second Edition.
 Addison-Wesley Professional, 2004.
Booch, Grady; Rumbaugh, James; Jacobson, Ivar. The Unified Modeling Language User Guide. Second Edition.
 Addison-Wesley, 2005.
Bruegge, Bernd; Duto1t, Allen. Object-Oriented Software Engineering: Using UML, Patterns and Java.
 Third Edition. Prentice Hall, 2009.
Bynum, Terrell W. (editor); Rogerson, Simon. Computer Ethics and Professional Responsibility:
 Introductory Text and Readings. Blackwell,2008.
Coplien, James; Harrison, Neil. Organizational Patterns of Agile Software Development. Prentice Hall, 2005.
Dikel, David M.; Kane, David; Wilson, James R. Software Architecture: Organizational Principles and

Patterns. Prentice Hall, 2001.
Fowler, Martin. Analysis Patterns: Reusable Object Models. Addison-Wesley, 1997.
Fowler, Martin, with Kenneth Scott. UML Distilled: A Brief Guide to the Standard Object Modeling Language.

Third Edition. Addison-Wesley, 2003.
Gamma, Erich; Helm, Richard; Johnson, Ralph; Vlissides, John. Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley, 1995.
Hoffer, et. al. Modern Systems Analysis & Design. Seventh Edition. Prentice-Hall,2013.
Jacobson, Lawson, and Ng. The Essentials of Modern Software Engineering: Free the Practices from the Method Prisons!
 ACM Books, 2019.
Kerievsky, Joshua. Refactoring to Patterns . Addison-Wesley Professional, 2004.
Hoffer, et. al. Modern Systems Analysis & Design. Seventh Edition. Prentice-Hall,2013.
Jacobson, Lawson, and Ng. The Essentials of Modern Software Engineering: Free the Practices from the Method Prisons!
 ACM Books, 2019.
Pfleeger, Shari Lawrence; Atlee, Joanne. Software Engineering: Theory and Practice. Fourth Edition.
 Prentice Hall, 2009.
Pressman, Roger S. Software Engineering: A Practitioner's Approach. Eighth Edition. McGraw-Hill, 2019.
Quinn, Michael. Ethics for the Information Age. Seventh Edition.Pearson,2016.
Schach, Stephen R. Classical and Object-Oriented Software Engineering. Eighth Edition. McGraw-Hill, 2010.

 Shalloway, Alan; Trott, James. Design Patterns Explained: A New Perspective on Object-Oriented Design.
Second Edition. Addison-Wesley, 2004.

Sommerville, Ian. Software Engineering. Tenth Edition. Addison-Wesley,2018.
West, David. Head Object-Oriented Analysis and Design. O’Rielly Media, 2011.
Zobel, Justin. Writing for Computer Science. Third Edition. Springer,2015.

Academic Integrity Statement:
 “Salem State University assumes that all students come to the University with serious educational intent and expects them
to be mature, responsible individuals who will exhibit high standards of honesty and personal conduct in their academic life. All
forms of academic dishonesty are considered to be serious offences against the University community. The University will apply
sanctions when student conduct interferes with the University primary responsibility of ensuring its educational objectives.”
Consult the University catalog for further details on Academic Integrity Regulations and, in particular, the University definition
of academic dishonesty.
 The Academic Integrity Policy and Regulations can be found in the University Catalog and on the University website
(http://catalog.salemstate.edu/content.php?catoid=13&navoid=1295#Academic_Integrity). The formal regulations are extensive

http://www.agilemodeling.com/
http://www.acm.org/
http://www.ieee.org/portal/site
http://catalog.salemstate.edu/content.php?catoid=13&navoid=1295#Academic_Integrity

Page 6 of 6

and detailed - familiarize yourself with them if you have not previously done so. A concise summary of and direct quote from
the regulations: "Materials (written or otherwise) submitted to fulfill academic requirements must represent a student's own
efforts". Submission of other's work as one's own without proper attribution is in direct violation of the University's Policy and
will be dealt with according to the University's formal Procedures. Copying without attribution is considered cheating in an
academic environment - simply put, do not do it!

University-Declared Critical Emergency Statement:
 In the event of a university-declared emergency, Salem State University reserves the right to alter this course plan. Students
should refer to www.salemstate.edu for further information and updates. The course attendance policy stays in effect until there
is a university-declared critical emergency.
 In the event of an emergency, please refer to the alternative educational plans for this course, which will be distributed via
standing class communication protocols. Students should review the plans and act accordingly. Any required material that may
be necessary will have been previously distributed to students electronically or will be made available as needed via email and/or
Internet access.

Equal Access Statement:
 "Salem State University is committed to providing equal access to the educational experience for all students in compliance
with Section 504 of The Rehabilitation Act and The Americans with Disabilities Act and to providing all reasonable academic
accommodations, aids and adjustments. Any student who has a documented disability requiring an accommodation, aid or
adjustment should speak with the instructor immediately. Students with Disabilities who have not previously done so should
provide documentation to and schedule an appointment with the Office for Students with Disabilities and obtain appropriate
services."

Note: This syllabus represents the intended structure of the course for the semester. If changes are necessary,
students will be notified in writing and via email.

http://www.salemstate.edu/

